LUD lab Achievements Exhibition --拔尖计划2.0线上书院主题活动周

September 20, 2022

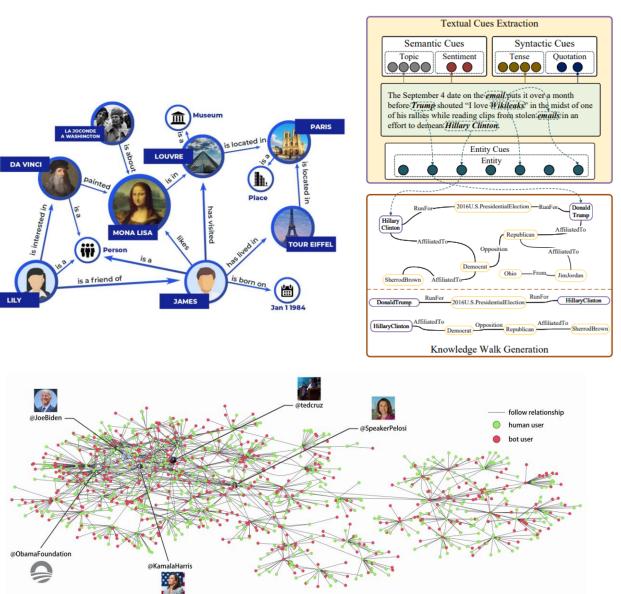
Zhaoxuan Tan, Zhenyu Lei, Xinshun Feng, Wenqian Zhang, Hongrui Wang

LUD Lab, Xi'an Jiaotong University

luoundergradxjtu.github.io

What is the LUD Lab?

- Luo lab Undergraduate Division
- bridge the gap between undergraduate studies and graduate research

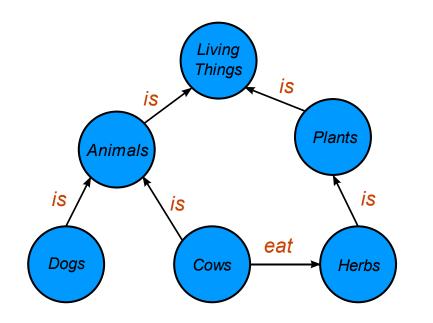


Prof. Minnan Luo

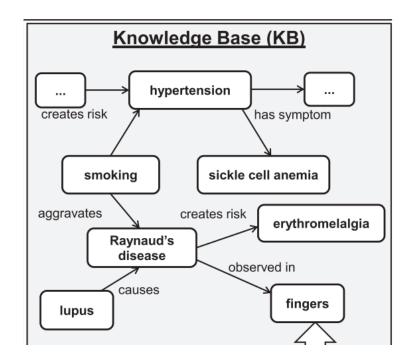
- 12 active members
 - 8 seniors + 2 juniors + 2 sophomore
- Top-notch publications
 - Published: [CIKM'21 a], [CIKM'21 b], [ASONAM'21], [AAAI'22], [NAACL'22], [CIKM'22], [NeurIPS'22]
 - Submission: [EMNLP'22], [AAAI'23]*4

Our Research Interests

- Knowledge Graphs
- Social Network Analysis
- Graph Neural Networks
- Natural Language Processing


KRACL: Contrastive Learning with Graph Context Modeling for Sparse Knowledge Graph Completion

Zhaoxuan Tan Director, LUD Lab, Xi'an Jiaotong University


zhaoxuan.info

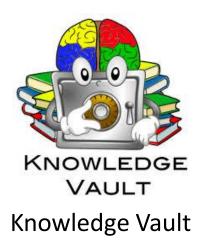
Knowledge Graphs (KGs)

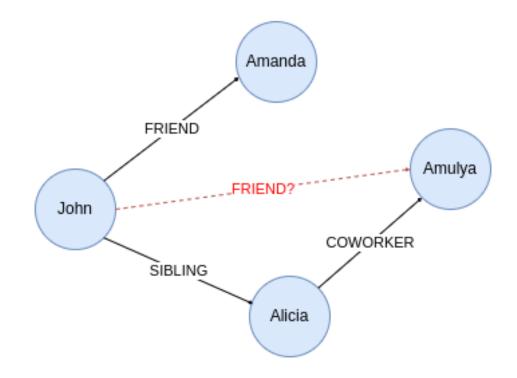
• Structured representation of commonsense and domain knowledge

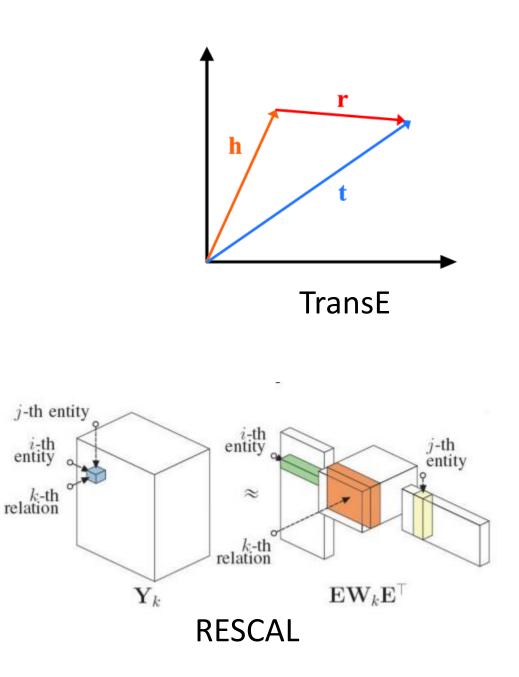
commonsense

Domain-specific

KGs are incomplete

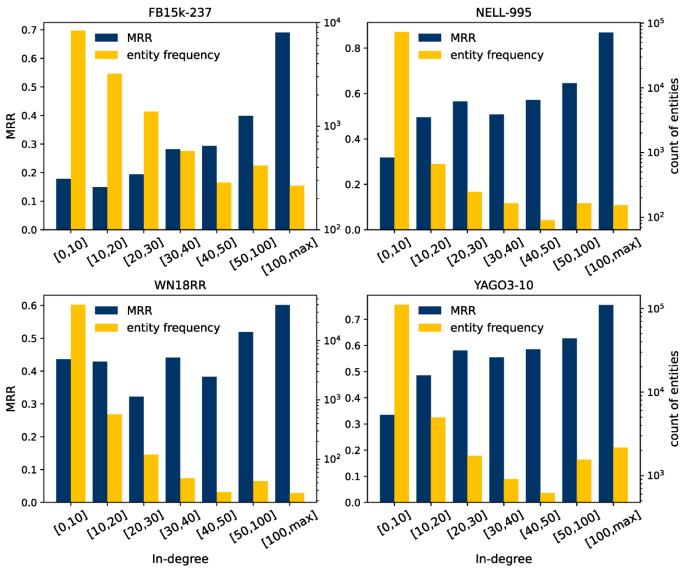

- Supervised (manually build)
 - Freebase
 - Wikidata
- Semi-supervised (human-in-the-loop)
 - NELL
 - Knowledge Vault


Wikidata

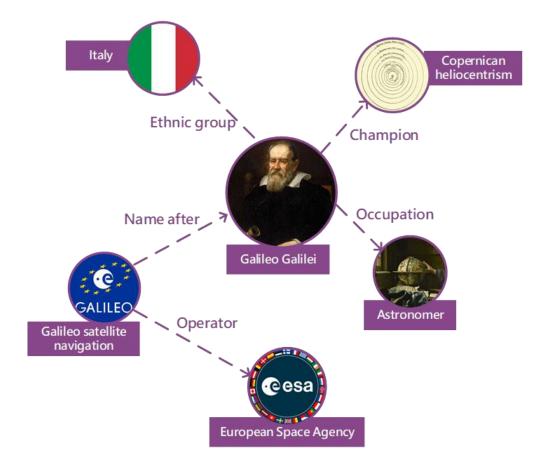

Knowledge Graph Completion

- Form: Given (h, r, ?), predict t
- Link prediction
- 1 hop knowledge query

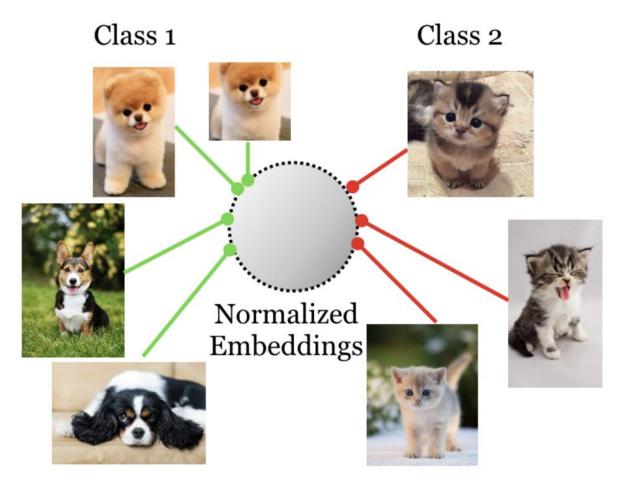
Related work


- Translation-based model
 - TransE
 - RotatE
- Factorization-based model
 - RESCAL
 - DistMult
- Neural-based model
 - ConvE
 - ConvKB
 - HittER

However..

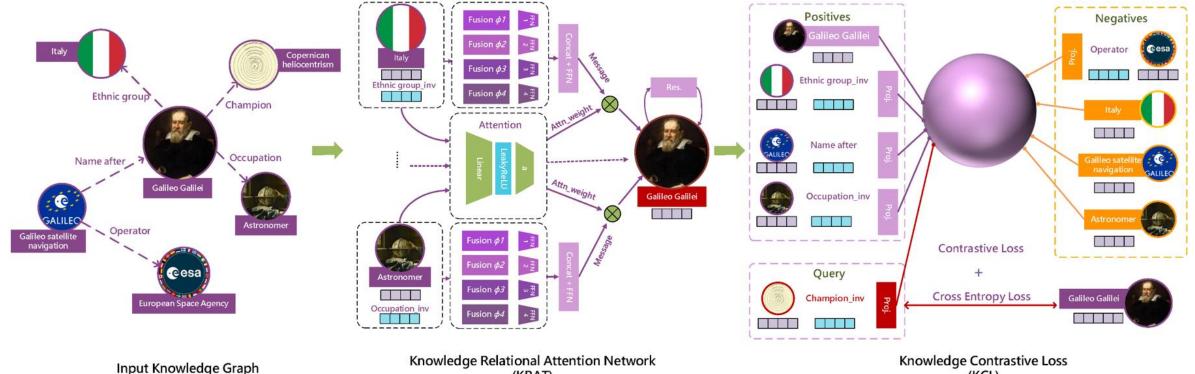

 Predicting Entities rarely appear in KGs remains challenging

- 1. Common existence of sparse entities
- 2. Performance of sparse entities worse than that of frequent ones


1/2 Intuition: Graph Context Modeling

- Context information in KGs
- Inductive bias in KG operator

2/2 Intuition: Contrastive Learning


- Label-efficient
- Robust to noisy data

Supervised Contrastive

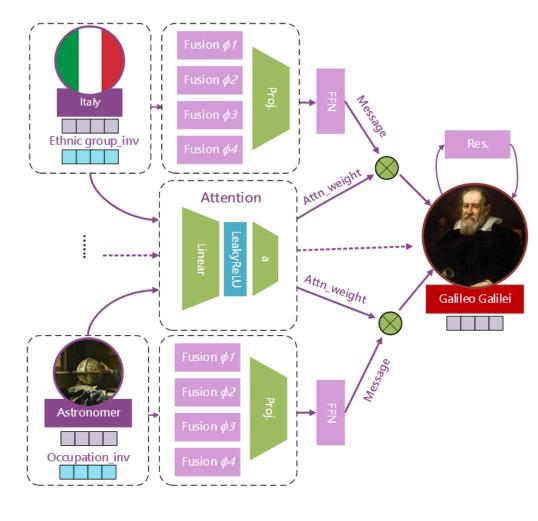
KRACL

• Contrastive Learning with Graph Context Modeling for Sparse Knowledge Graph Completion

(KRAT)

(KCL)

1/2 Knowledge Relational Attention Network (KRAT)


- Inductive bias in message
 - Subtraction(Sub): $\phi(h_s, h_r) = h_s h_r$
 - Multiplication(Mult): $\phi(h_s, h_r) = h_s \cdot h_r$
 - Rotation(Rot): $\phi(h_s, h_r) = h_s \circ h_r$
 - Circular-correlation(Corr): $\phi(h_s, h_r) = h_s \star h_r$

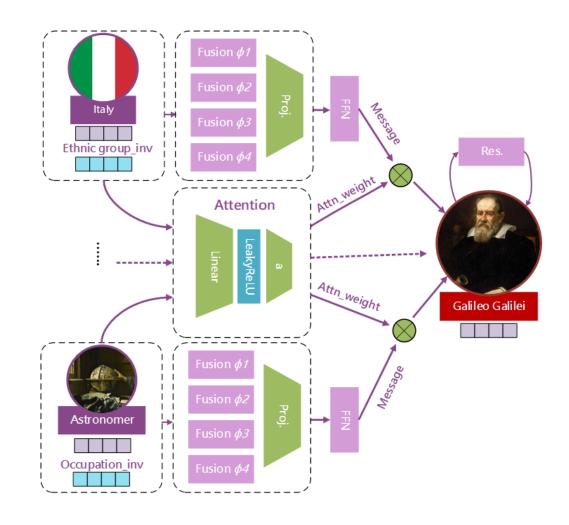
$$f(\boldsymbol{h}_s, \boldsymbol{h}_r) = \sigma\left(\left[\boldsymbol{W}_1^{(l)}\phi_1(\boldsymbol{h}_s, \boldsymbol{h}_r)\big|\big|\dots\big|\big|\boldsymbol{W}_n^{(l)}\phi_n(\boldsymbol{h}_s, \boldsymbol{h}_r)\big]\right)$$

• Attention weight

$$w_{sro} = \boldsymbol{a}^{(l)} Leaky ReLU\left(\boldsymbol{W}_{att}^{(l)}\left[\boldsymbol{h}_{s}^{(l-1)} || \boldsymbol{h}_{r}^{(l-1)} || \boldsymbol{h}_{o}^{(l-1)}\right]\right)$$

 $\alpha_{sro} = softmax_{sr}(w_{sro})$ $= \frac{exp(w_{sro})}{\sum_{n \in \mathcal{N}_o} \sum_{p \in \mathcal{R}_{no}} exp(w_{npo})},$

Knowledge Relational Attention Network (KRAT)


2/2 Knowledge Relational Attention Network (KRAT)

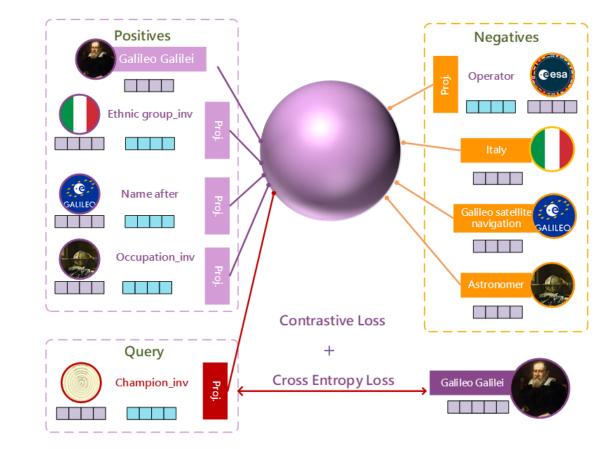
Aggregation

$$\boldsymbol{h}_{o}^{(l)} = \sigma \left(\sum_{(s,r) \in \mathcal{N}_{o}} \alpha_{sro} \boldsymbol{W}_{agg}^{(l)} f(\boldsymbol{h}_{s}, \boldsymbol{h}_{r}) + \boldsymbol{W}_{res}^{(l)} \boldsymbol{h}_{o}^{(l-1)} \right)$$

• Relation update

$$oldsymbol{h}_r^{(l)} = oldsymbol{W}_{rel}^{(l)} \cdot oldsymbol{h}_r^{(l-1)}$$
 .

Knowledge Relational Attention Network (KRAT)


1/2 Knowledge Contrastive Loss

- Knowledge projection
 - TransE $z_{(s,r)} = h_s + h_r$
 - DistMult $z_{(s,r)} = h_s * h_r$
 - RotatE
 - ConvE

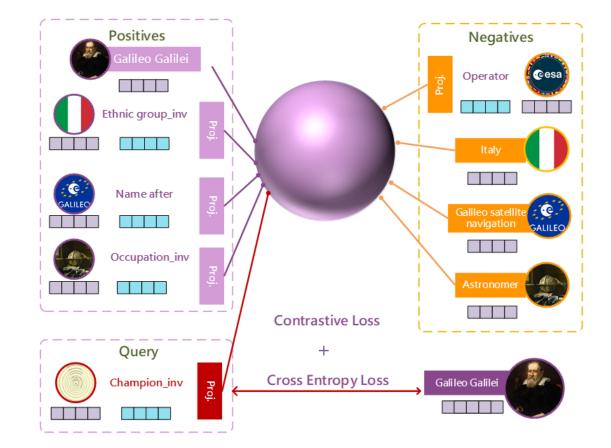
$$z_{(s,r)} = h_s \circ h_r$$
$$z_{(s,r)} = \sigma(vec(\sigma([\mathbf{h}_s] | \mathbf{h}_r] * \omega))\mathbf{W}_p)$$

• Contrastive loss

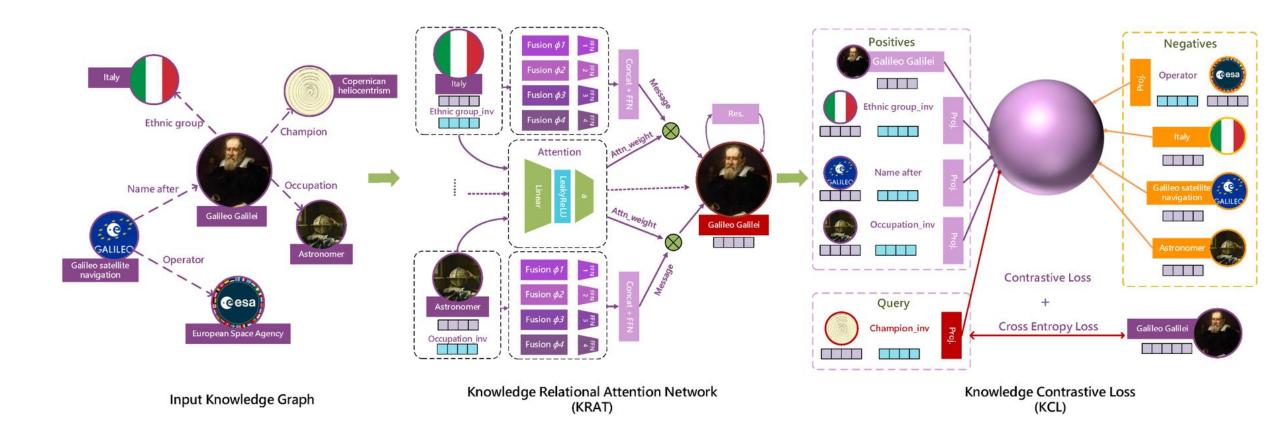
$$\mathcal{L}_{CL} = \sum_{o \in \mathcal{T}} \frac{-1}{|\mathcal{T}_o|} \sum_{\boldsymbol{z}_{(s,r)} \in \mathcal{T}_o} \log \frac{exp(\boldsymbol{z}_{(s,r)} \cdot \boldsymbol{h}_o/\tau)}{\sum_{k \notin \mathcal{T}_o} exp(\boldsymbol{z}_k \cdot \boldsymbol{h}_o/\tau)}$$

2/2 Knowledge Contrastive Loss

Scoring candidate entities


$$\hat{y}_{(s,r)}^{o} = \boldsymbol{z}_{(s,r)} \cdot \boldsymbol{h}_{o}^{T},$$

• Cross Entropy loss


$$\mathcal{L}_{CE} = -\frac{1}{|\mathcal{T}|} \sum_{(s,r)\in\mathcal{T}} \sum_{o\in\mathcal{E}} y^o_{(s,r)} \cdot \log \hat{y}^o_{(s,r)}$$

• Final objective

$$\mathcal{L} = \mathcal{L}_{CL} + \mathcal{L}_{CE}.$$

Quick recap

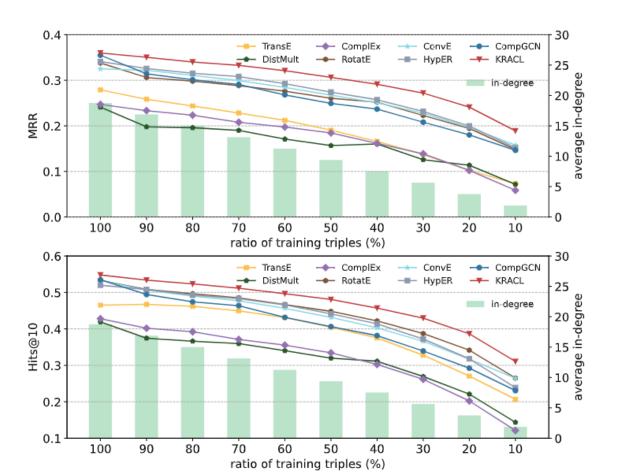
• Sparse KGs

	WN18RR						KRA			
Model	MRR	MR	H@10	Н@3	H@1	MRR	MR	NELL-99 H@10	Н@3	H@1
TransE	.243	2300	.532	.441	.043	.401	2100	.501	.472	.344
DistMult	.444	7000	.504	.47	.412	.485	4213	.61	.524	.401
ComplEx	.449	7882	.53	.469	.409	.482	4600	.606	.528	.399
RotatE	.494	4046	.571	.510	.455	.483	2582	.565	.514	.435
ConvE	.456	4464	.531	.47	.419	.491	3560	.613	.531	.403
HypER	.493	4687	.549	.503	.464	.540	1763	.657	.580	.471
TuckER	.470	-	.526	.482	.443	.520	2330	.624	.561	.455
R-GCN	.123	6700	.207	.137	.08	.12	7600	.188	.126	.082
KBAT	.412	<u>1921</u>	.554	-	-	.319	3683	.474	.370	.233
CompGCN	.481	3113	.548	.492	.448	.534	1246	.644	.607	.466
HAKE	.497	-	.582	.516	.452	.508	5836	.613	.557	.442
GC-OTE	.491	-	.583	.511	.442	.538	837	.657	.576	.469
HittER	.503	-	.584	.516	.462	-	-	-	-	-
DisenKGAT	.506	4135	.590	.522	.462	.547	882	.666	.598	.474
GIE	.491	-	.575	.505	.452	.474	2218	.596	.504	.408
CAKE	-	-	-	-	-	.543	433	.655	.583	.477
KRACL	.527	1388	.613	.547	.482	.563	<u>716</u>	.672	<u>.602</u>	.495

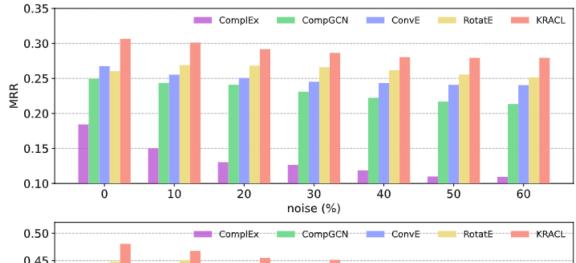
	FB15k-237					Kinship				
Model	MRR	MR	H@10	H@3	H@1	MRR	MR	H@10	H@3	H@1
TransE	.294	357	.465	-	-	.211	38.9	.470	.252	.093
DistMult	.241	254	.419	.263	.155	.48	7.9	.708	.491	.377
ComplEx	.247	339	.428	.275	.158	.823	2.48	.971	.899	.733
RotatE	.338	177	.533	.375	.241	.738	2.9	.954	.827	.617
ConvE	.325	244	.501	.356	.237	.772	3.0	.950	.858	.665
HypER	.341	250	.520	.376	.252	.868	1.96	.981	.935	.790
TuckER	.355	152	.541	<u>.390</u>	.262	.885	1.67	.986	<u>.948</u>	<u>.816</u>
R-GCN	.248	339	.428	.275	.158	.109	25.9	.239	.088	.03
KBAT	.156	392	.305	.167	.085	.637	3.41	.955	.757	.470
CompGCN	.355	197	.535	.390	.264	.810	2.26	.977	.892	.709
HAKE	.346	-	.542	.381	.250	.802	2.38	.968	.881	.704
GC-OTE	.361	-	.550	.396	.267	.832	2.05	.984	.917	.735
HittER	.373	-	.558	.409	.279	-	-	-	-	-
DisenKGAT	.368	179	.553	.407	.275	.832	1.96	.986	.914	.737
GIE	.362	-	.552	.401	.271	.664	3.43	.927	.770	.520
CAKE	.321	170	.515	.355	.226	-	-	-	-	-
KRACL	.360	150	.548	.395	.266	.895	1.48	.991	.970	.817

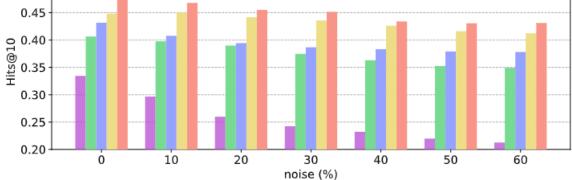
• Dense KGs

• Entity indegree analysis


In-degree	RotatE		ConvE		Com	pGCN	KRACL	
	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10
[0, 10]	.178	.309	.186	.338	.198	.348	.232	.394
[10, 20]	.149	.294	.154	.299	<u>.156</u>	.296	.181	.335
[20, 30]	.194	.381	<u>.199</u>	.386	.198	.370	.218	.405
[30, 40]	.282	.497	.287	.485	.280	.476	.307	.501
[40, 50]	.294	.547	.297	.516	.298	.520	.328	.552
[50, 100]	.399	.681	<u>.403</u>	.675	.400	.663	.434	.702
[100, max]	.691	.929	<u>.714</u>	.936	.674	.905	.716	.932

Ablation study


Model	WN1	8RR	NELL-995			
Model	MRR	H@3	MRR	H@3		
w/o KRAT	.509	.522	.543	.589		
w/o attention	.504	.521	.543	.583		
w/o res.	.518	.532	.551	.593		
w/o \mathcal{L}_{CL}	.502	.514	.496	.541		
w/o \mathcal{L}_{CE}	.495	.531	.542	.586		
BCELoss	.469	.478	.507	.547		
KRACL	.527	.547	.563	.602		


Table 5: Results of ablation study of the proposed KRACL on the WN18RR and NELL-995 dataset. *BCELoss* denotes replacing the KCL loss with binary cross entropy loss.

• Sparsity study

• Robustness against noise

• A more powerful message function is needed

Dec./Proj. (=X) \rightarrow	TransE		DistMult		RotatE		ConvE	
Methods ↓	MRR	H@10	MRR	H@10	MRR	H@10	MRR	H@10
Х	.279	.441	.241	.419	.338	.533	.325	.501
X+R-GCN	.281	.469	.324	.499	.295	.457	.342	.525
X+W-GCN	.264	.444	.324	.504	.272	.430	.244	.525
X+CompGCN (Sub)	.335	.514	.336	.513	.290	.453	.352	.530
X+CompGCN (Mult)	.337	.515	.338	.518	.296	.456	.353	.532
X+CompGCN (Rot)	.271	.447	.289	.448	.296	.461	.325	.506
X+CompGCN (Corr)	.336	.518	.335	.514	.294	.459	.355	.535
X+KRAT (Sub)	.334	.519	.333	.512	.332	.512	.355	.541
X+KRAT (Mult)	.332	.513	.331	.510	.334	.511	.356	.540
X+KRAT (Rot)	.332	.512	.331	.508	.334	.513	.351	.538
X+KRAT (Corr)	.333	.518	.334	.512	.332	.509	.353	.538
X+KRAT (All operators)	.340	.524	.338	.517	.339	.522	.360	.548

Resources

- Paper: https://arxiv.org/abs/2208.07622
- Code: https://github.com/TamSiuhin/KRACL

Thank you!

Zhaoxuan Tan tanzhaoxuan@stu.xjtu.edu.cn zhaoxuan.info