Heterogeneity-aware Twitter Bot Detection with Relational Graph Transformers

Experiment

Shangbin Feng

LUD Lab, Xi'an Jiaotong University wind_binteng@stu.xjtu.edu.cn July 3, 2022

Table of Contents

- Introduction
- 2 Methodology
- 3 Experiment
- 4 Conclusion & Resources

Twitter Bot Detection

Definition

Twitter bots are Twitter users operated by automated programs.

Experiment

We detect them because they pursue malicious goals:

Election interfernece

- "Twitter Bots involve in the elections in the United States and Europe." WWW'19
- "Are 'bots' manipulating the 2020 conversation? Here's what's changed since 2016." The Washington Post.

Extreme ideology

- "Researchers: Nearly Half Of Accounts Tweeting About Coronavirus Are Likely Bots." NPR.
- Berger et al., "The Brookings project on US relations with the Islamic world."

Task Challenges

Generalization [CIKM 2021]

Different kinds of Twitter Bots

Adaptation [CIKM 2021]

The evolution of Twitter Bots

Community [ASONAM 2021]

Bots attack in groups and seem genuine individually

Disguise [ASONAM 2021]

Bots imitate the behavior and profile of genuine users

Conclusion & Resources

Related Work

Phase 1: feature engineering

User profile [ICWSM 2011], timeline [IEEE Intel. Systems 2016], URL redirection [TDSC 2013], mentioned websites [S&P 2011], efficient features [AAAI 2020], . . .

Phase 2: deep learning

RNN and word embeddings [TPS-ISA 2019], combine RNNs with features [Information Sciences 2018], GAN [IJCAI 2019], representation learning [CIKM 2021], . . .

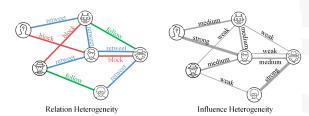
Phase 3: graph mining

GCN [WWW 2019], GraphHist [AAAI 2020], relational GNNs [ASONAM 2021], ...

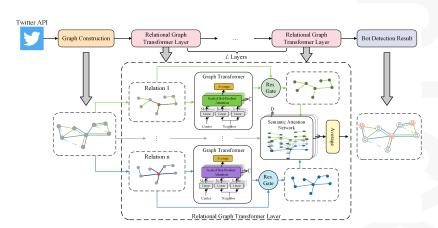
However

Previous graph-based approaches fail to leverage heterogeneities of online social networks!

- Relation heterogeneity
- Influence heterogeneity



- Construction a **HIN** to represent Twitter
- Propose relation graph transformers

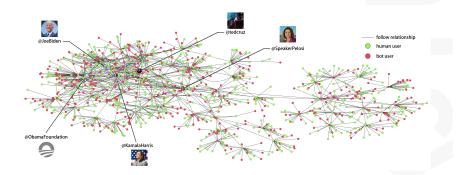


- Relational Graph Transformers
- Semantic Attention Networks

 Methodology
 Experiment
 Conclusion & Resources

 ○●○○
 ○○○○○
 ○○○

Graph Construction



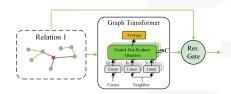
Relational Graph Transformers

Relational Graph Transformers

$$\begin{aligned} & q_{c,i}^{r}{}^{(l)} = W_{c,q}^{r}{}^{(l)} \cdot x_i^{(l-1)} + b_{c,q}^{r}{}^{(l)} \\ & k_{c,j}^{r}{}^{(l)} = W_{c,k}^{r}{}^{(l)} \cdot x_j^{(l-1)} + b_{c,k}^{r}{}^{(l)} \\ & v_{c,j}^{r}{}^{(l)} = W_{c,v}^{r}{}^{(l)} \cdot x_j^{(l-1)} + b_{c,v}^{r}{}^{(l)} \end{aligned}$$

$$\alpha_{c,ij}^{r(l)} = \frac{\langle q_{c,i}^{r(l)} k_{c,j}^{r(l)} \rangle}{\sum_{u \in N^{r}(l)} \langle q_{c,i}^{r(l)}, k_{c,u}^{r(l)} \rangle}$$

$$u_{i}^{r(l)} = \frac{1}{C} \sum_{c=1}^{C} \left[\sum_{j \in N^{r}(i)} \alpha_{c,ij}^{r}{}^{(l)} \cdot v_{c,j}^{r}{}^{(l)} \right]$$



Residual Gate

$$z_{i}^{r(l)} = sigmoid(W_{A}^{r} \cdot [u_{i}^{r(l)}, x_{i}^{(l)}] + b_{A}^{r}),$$

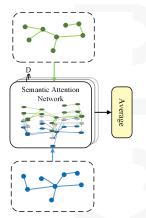
 $h_{i}^{r(l)} = tanh(u_{i}^{r(l)}) \odot z_{i}^{r(l)} + x_{i}^{r(l)} \odot (1 - z_{i}^{r(l)})$

Semantic Attention Networks

$$w_d^{r(l)} = \frac{1}{|V|} \sum_{i \in V} {q_d^{(l)}}^T \cdot tanh(W_{d,s}^{(l)} \cdot h_i^{r(l)} + b_{d,s}^{(l)})$$

$$\beta_d^{r(l)} = \frac{\exp(w_d^{r(l)})}{\sum_{k \in R} \exp(w_d^{k(l)})}$$

$$x_i^{(l)} = \frac{1}{D} \sum_{d=1}^{D} \left[\sum_{r \in R} \beta_d^{r(l)} \cdot h_i^{r(l)} \right]$$



Learning and Optimization

$$\hat{y}_i = softmax(W_O \cdot \sigma(W_L \cdot x_i^{(L)} + b_L) + b_O)$$

$$Loss = -\sum_{i \in Y} [y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)] + \lambda \sum_{w \in \theta} w^2$$

Experiment Settings

Dataset

TwiBot-20 is the comprehensive benchmark. Feng et al., CIKM 2021.

Baselines

- Feature-based Lee et al., Yang et al., Cresci et al., Miller et al., Botometer
- Deep learning-based Kudugunta et al., Wei et al., SATAR
- Graph-based Alhosseini et al., BotRGCN, Ours

SOTA Performance

Table 1: Characteristic and performance of different Twitter bot detection methods. Deep, interactive, representative, graphbased and heterogeneity-aware denotes whether the method involves deep learning, leverages user interactions, learns user representation, involves graph neural networks or leverages Twitter heterogeneity.

Experiment 000000

Method	Deep	Interactive	Representative	Graph-based	Heterogeneity-aware	Accuracy	F1-score
Lee et al.						0.7456	0.7823
Yang et al.						0.8191	0.8546
Cresci et al.						0.4793	0.1072
Kudugunta et al.	✓					0.8174	0.7515
Wei et al.	✓					0.7126	0.7533
Miller et al.		✓				0.4801	0.6266
Botometer		✓				0.5584	0.4892
SATAR	✓	✓	✓			0.8412	0.8642
Alhosseini et al.	✓	✓	✓	✓		0.6813	0.7318
BotRGCN	✓	✓	✓	✓		0.8462	0.8707
Ours	✓	✓	✓	✓	✓	0.8664	0.8821

Relational Graph Transformers

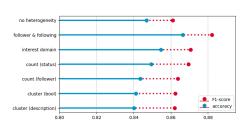
■ We proposed them, are they good?

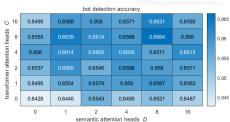
Table 3: Ablation study of our proposed GNN architecture. RT and SA denote relational transformers and semantic attention networks respectively.

Ablation Settings	Accuracy	F1-score	
full model	0.8664	0.8821	
remove transformer in RT	0.8521	0.8679	
remove gated residual in RT	0.8478	0.8646	
replace RT with GAT	0.8571	0.8726	
replace RT with GCN	0.8444	0.8619	
replace RT with SAGE	0.8546	0.8687	
summation as SA	0.8512	0.8654	
mean pooling as SA	0.8512	0.8663	
max pooling as SA	0.8495	0.8629	
min pooling as SA	0.8555	0.8704	

Experiment 000000

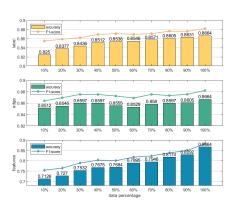
Heterogeneity

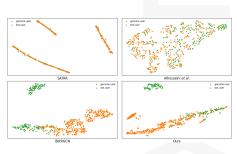




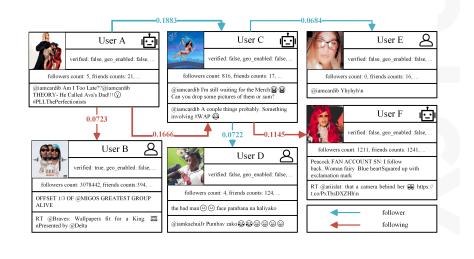
Besides

Our approach is data-efficient and learns good representations!





Case Study



Experiment 000000

Conclusion

In this paper, we

- leverage relation and influence heterogeneities for HIN-based Twitter bot detection
- propose relational graph transformers to model these two heterogeneities
- achieve state-of-the-art performance on TwiBot-20 and bear out the necessity of analyzing Twitter heterogeneity

 Methodology
 Experiment
 Conclusion & Resources

 0000
 00000
 0●0

Resources

We make the code and model of Relational Graph Transformers available at

https://github.com/BunsenFeng/BotHeterogeneity

For the datasets we used to train and test Relational Graph Transformers:

■ TwiBot-20: https://github.com/BunsenFeng/TwiBot-20

Thank You!

Shangbin Feng

LUD Lab, Xi'an Jiaotong University wind_binteng@stu.xjtu.edu.cn July 3, 2022